A CANTOR-BERNSTEIN THEOREM FOR σ -COMPLETE MV-ALGEBRAS

A. DE SIMONE, Napoli, D. MUNDICI, Florence, and M. NAVARA, Praha

(Received June 14, 2000)

Abstract. The Cantor-Bernstein theorem was extended to σ -complete boolean algebras by Sikorski and Tarski. Chang's MV-algebras are a nontrivial generalization of boolean algebras: they stand to the infinite-valued calculus of Lukasiewicz as boolean algebras stand to the classical two-valued calculus. In this paper we further generalize the Cantor-Bernstein theorem to σ -complete MV-algebras, and compare it to a related result proved by Jakubík for certain complete MV-algebras.

Keywords: Cantor-Bernstein theorem, MV-algebra, boolean element of an MV-algebra, partition of unity, direct product decomposition, σ -complete MV-algebra

MSC 2000: 06D35, 06D30, 06C15, 03G20

1. INTRODUCTION

The Cantor-Bernstein theorem states that, if a set X can be embedded into a set Y, and vice versa, then there is a one-one map of X onto Y. The theorem was proved by Dedekind in 1887, conjectured by Cantor in 1895, and again proved by Bernstein in 1898, [6, p. 85].

For any boolean algebra A, let [0, a] denote the boolean algebra of all $x \in A$ such that $0 \leq x \leq a$, equipped with the restriction of the join and meet of A, where the complement of $y \in [0, a]$ is the meet of a with the complement $\neg y$ of y in A. (Note that Sikorski [8, p. 29] writes A|a instead of [0, a].)

Research supported by COST ACTION 15 on Many-valued logics for computer science applications, Project on Logic of the Italian MURST, Project VS 96049 of the Czech Ministry of Education and Grant 201/97/0437 of the Grant Agency of the Czech Republic.

⁴³⁷

Sikorski [9] and Tarski [10] proved the following generalization of the (Dedekind)-Cantor-Bernstein theorem: For any two σ -complete boolean algebras A and B and elements $a \in A$ and $b \in B$, if B is isomorphic to [0, a] and A is isomorphic to [0, b], then A and B are isomorphic. To obtain the Cantor-Bernstein theorem it suffices to assume that A and B are the powersets of X and Y, respectively, with the natural set-theoretic boolean operations.

Our aim in this paper is to further generalize the Cantor-Bernstein theorem to MValgebras—the latter being an interesting "non-commutative" extension of boolean algebras (see [7] for a precise formulation of this). Since, as proved in [3] and [5], the σ -completeness assumption is indispensable already in the boolean algebraic setup, our Cantor-Bernstein theorem shall be proved for σ -complete MV-algebras.

2. MV-ALGEBRAS

An *MV*-algebra $A = (A, 0, \oplus, \neg)$ is an algebra where the operation $\oplus : A \times A \to A$ is associative and commutative with 0 as the neutral element, the operation $\neg : A \to A$ satisfies the identities $\neg \neg x = x$ and $x \oplus \neg 0 = \neg 0$, and, in addition,

(1)
$$y \oplus \neg (y \oplus \neg x) = x \oplus \neg (x \oplus \neg y).$$

Example 2.1. The real unit interval [0, 1] equipped with the operations $x \oplus y = \min(1, x + y)$ and $\neg x = 1 - x$ is an MV-algebra.

Following common usage, for any elements x, y of an MV-algebra we will use the abbreviations $1 = \neg 0, x \odot y = \neg(\neg x \oplus \neg y)$ and $x \ominus y = x \odot \neg y$. We will denote by (A, \lor, \land) the underlying distributive lattice of A, where $x \lor y = x \oplus \neg(x \oplus \neg y)$ and $x \land y = x \odot \neg(x \odot \neg y)$. With reference to the underlying order of A, for any element $a \in A$ we let the interval [0, a] be defined by

$$[0,a] = \{ x \in A \mid 0 \leq x \leq a \}.$$

An MV-algebra A is σ -complete (complete) iff every sequence (every family, respectively) of elements of A has supremum in A with respect to the underlying order of A.

As shown by Chang, boolean algebras coincide with MV-algebras satisfying the equation $x \oplus x = x$. In this case the operation \oplus coincides with \lor , and the operation \odot coincides with \land .

An element a in an MV-algebra A is called *boolean* iff $a \oplus a = a$. We let $\mathbf{B}(A)$ denote the set of boolean elements of A. It is not hard to see that the operations of A make $\mathbf{B}(A)$ a boolean algebra. As shown in Corollary 3.3 below, if A is a σ -complete

MV-algebra, then $\mathbf{B}(A)$ is a σ -complete boolean algebra, and the σ -infinitary operations of $\mathbf{B}(A)$ agree with the restrictions of the corresponding operations of A.

A homomorphism between two MV-algebras is a map that sends zero to zero, and preserves the operations \oplus and \neg . A one-one surjective homomorphism is called an *isomorphism*.

For further information on MV-algebras we refer to [1], [2] and [7].

Definition 2.2. Let A be an MV-algebra and z a fixed, but otherwise arbitrary, element of A. Let the map $h_z: A \to [0, z]$ be defined by

$$h_z(x) = x \wedge z.$$

Further, we define the operation $\neg_z \colon [0, z] \to [0, z]$ by

$$(3) \qquad \qquad \neg_z x = z \odot \neg x = z \ominus x,$$

and the operation $\oplus_z \colon [0, z] \times [0, z] \to [0, z]$ by

(4)
$$x \oplus_z y = (x \oplus y) \land z.$$

A moment's reflection shows that the ranges of both operations \neg_z and \oplus_z coincide with [0, z].

Proposition 2.3. Let A be an MV-algebra and $b \in A$. We then have

(i) for each element $b \in A$, the structure $([0, b], \oplus_b, \neg_b, 0)$ is an MV-algebra.

If, in addition, b is a boolean element of A then

- (ii) $\neg_b x = b \land \neg x$ for all $x \in [0, b]$;
- (iii) the interval [0, b] (as well as the interval $[0, \neg b]$) is an ideal of A;
- (iv) The map h_b defined in (2) is a homomorphism of A onto [0, b] whose kernel coincides with $[0, \neg b]$;
- (v) The MV-algebra [0, b] is isomorphic to the quotient MV-algebra $A/[0, \neg b]$;
- (vi) [0, b] is a subalgebra of A iff b = 1 iff [0, b] = A.

Proof. (i) For every $x \in [0, b]$ we have

$$\neg_b \neg_b x = b \odot \neg (b \odot \neg x) = b \land x = x$$

and

$$x \oplus_b \neg_b 0 = x \oplus_b b = (x \oplus b) \land b = b = \neg_b 0.$$

Associativity of \oplus_b follows from the identities

$$(x \oplus_b y) \oplus_b z = (((x \oplus y) \land b) \oplus z) \land b$$
$$= ((x \oplus y \oplus z) \land (b \oplus z)) \land b$$
$$= (x \oplus y \oplus z) \land b = \ldots = x \oplus_b (y \oplus_b z).$$

With reference to (1) we shall now prove the identity

(5)
$$y \oplus_b \neg_b (y \oplus_b \neg_b x) = x \oplus_b \neg_b (x \oplus_b \neg_b y)$$
 for all $x, y \in [0, b]$.

First, using distributivity of \odot over \lor , we transform a part of the expression on the left-hand side of (5) as follows:

$$\neg_b(y \oplus_b \neg_b x) = b \odot \neg((y \oplus (b \odot \neg x)) \land b)$$

= $b \odot ((\neg y \odot \neg (b \odot \neg x)) \lor \neg b) = b \odot \neg y \odot \neg (b \odot \neg x)$
= $\neg y \odot (b \land x) = \neg y \odot x = \neg(y \oplus \neg x).$

We can now simplify the left-hand term in (5) as follows:

$$y \oplus_b \neg_b (y \oplus_b \neg_b x) = (y \oplus \neg (y \oplus \neg x)) \land b = (y \lor x) \land b = y \lor x,$$

which settles (5). The remaining verifications needed to show that [0, b] is an MV-algebra are all trivial.

Following now the proof of [2, Proposition 6.4.1], let us assume that $b \in \mathbf{B}(A)$. Then condition (ii) is an immediate consequence of the definition of \neg_b and of the fact that \odot coincides with \land whenever one of its arguments is boolean, [2, Theorem 1.5.3]. Similarly, (iii) follows from the definition of a boolean element, [2, Corollary 1.5.6], and we also see that \oplus_b coincides with the restriction of \oplus to [0, b]. To prove (iv), for all $x, y \in A$ we can write $(x \land b) \oplus (y \land b) = ((x \land b) \oplus y) \land ((x \land b) \oplus b)$. From $(x \land b) \oplus b = (x \land b) \lor b = b$ we get $(x \land b) \oplus (y \land b) = (x \oplus y) \land (b \oplus y) \land b = (x \oplus y) \land b$. We conclude that $h_b(x \oplus y) = h_b(x) \oplus h_b(y) = h_b(x) \oplus_b h_b(y)$. The rest is trivial. The proof of (v) and (vi) is the same as in [2, Proposition 6.4.3].

Remarks. As shown by (ii) above, whenever b is a boolean element of A, there is no discrepancy between our present definition of \neg_b and the definition in [2, (6.4)].

If in a boolean algebra B we denote by \mathcal{I} the principal ideal generated by $\neg b$, then $\mathcal{I} = [0, \neg b]$ and the algebra [0, b] is isomorphic to B/\mathcal{I} via the map $x \in [0, b] \mapsto x/\mathcal{I} \in B/\mathcal{I}$. Condition (v) is a generalization of this fact to MV-algebras.

If a is not a boolean element of A, then [0, a] need not be a homomorphic image of A. For an example, let $A = \{0, 1/2, 1\}$ be a subalgebra of the MV-algebra [0, 1]

of Example 2.1. Then $[0, 1/2] = \{0, 1/2\}$ is not a homomorphic image of A, because A has no other ideals than $\{0\}$. One more example is given in 5.2 below.

On the other hand, the existence of a homomorphism of A onto [0, a] need not imply that a is a boolean element of A. As a matter of fact, in the MV-algebra [0, 1]of Example 2.1, multiplication by 1/2 is a homomorphism of [0, 1] onto the interval MV-algebra [0, 1/2], but the element 1/2 is not boolean in [0, 1].

The proof of the following result is immediate.

Lemma 2.4. Let A and B be MV-algebras and let $\alpha: A \to B$ be an isomorphism of A onto B. For any $a \in A$, the restriction of the map α to the interval [0, a] of A is an isomorphism of the MV-algebra [0, a] onto the interval $[0, \alpha(a)]$ of B, once these two intervals are equipped with the MV-algebraic operations of Definition 2.2 and Proposition 2.3 (i).

Corollary 2.5. For each $a \in \mathbf{B}(A)$, the mapping $x \mapsto (x \land a, x \land \neg a)$ is an isomorphism of A onto the product MV-algebra $[0, a] \times [0, \neg a]$.

Proof. The same as for [2, Lemma 6.4.5].

3. PARTITIONS OF UNITY AND DECOMPOSITIONS

In Lemma 3.4 below we will give an infinitary generalization of Corollary 2.5. To this purpose, we prepare

Notation. We set $\mathbb{N} = \{1, 2, 3, \ldots\}$, $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$ and $\mathbb{N}_{\infty} = \mathbb{N} \cup \{\infty\}$.

Lemma 3.1. Let A be a σ -complete MV-algebra. Let $x_1, x_2, \ldots \in A$. Then the following countably infinitary de Morgan identities hold:

(6)
$$\bigwedge_{n \in \mathbb{N}} x_n = \neg \bigvee_{n \in \mathbb{N}} \neg x_n$$

and

(7)
$$\bigvee_{n\in\mathbb{N}} x_n = \neg \bigwedge_{n\in\mathbb{N}} \neg x_n$$

Proof. Let $a = \bigwedge_{n \in \mathbb{N}} x_n$ and $b = \bigvee_{n \in \mathbb{N}} \neg x_n$. For all $n \in \mathbb{N}$ we have $a \leq x_n$, whence $\neg a \geq \neg x_n$. Therefore $\neg a \geq \bigvee_{n \in \mathbb{N}} \neg x_n = b$. Similarly, for all $n \in \mathbb{N}$ we have $b \geq \neg x_n, \ \neg b \leq x_n$, whence $\neg b \leq \bigwedge_{n \in \mathbb{N}} x_n = a$ and $b \geq \neg a$, which settles (6). The proof of (7) is similar.

As an immediate consequence we get the following infinitary distributive laws:

Lemma 3.2. Let A be a σ -complete MV-algebra. Let $x_1, x_2, \ldots \in A$. Then for each $x \in A$ we have

(8)
$$x \wedge \bigvee_{n \in \mathbb{N}} x_n = \bigvee_{n \in \mathbb{N}} (x \wedge x_n)$$

and

(9)
$$x \vee \bigwedge_{n \in \mathbb{N}} x_n = \bigwedge_{n \in \mathbb{N}} (x \vee x_n).$$

Proof. This is an easy adaptation of the proof of [2, Lemma 6.6.4]. \Box

Corollary 3.3. Let A be a σ -complete MV-algebra. Then

(i) $\mathbf{B}(A)$ is a σ -complete boolean algebra. As a matter of fact, for any sequence $b_1, b_2, \ldots \in \mathbf{B}(A)$ we have

(10)
$$\bigvee_{n\in\mathbb{N}} b_n \in \mathbf{B}(A)$$

and

(11)
$$\bigwedge_{n\in\mathbb{N}} b_n \in \mathbf{B}(A).$$

(ii) For every $b \in \mathbf{B}(A)$, letting $h_b: A \to [0, b]$ be as in (2), it follows that [0, b] is a σ -complete MV-algebra, and h_b preserves all existing infima and suprema. Therefore, for all $x_1, x_2, \ldots \in A$ we can write

(12)
$$h_b\left(\bigvee_{n\in\mathbb{N}}x_n\right) = \bigvee_{n\in\mathbb{N}}h_b(x_n)$$

and

(13)
$$h_b\left(\bigwedge_{n\in\mathbb{N}} x_n\right) = \bigwedge_{n\in\mathbb{N}} h_b(x_n)$$

Proof. An easy adaptation of the proof of [2, Corollary 6.6.5].

From Lemma 3.2 we obtain the desired generalization of Corollary 2.5, given by the following variant of [2, Lemma 6.6.6].

Lemma 3.4. Let A be a σ -complete MV-algebra. Suppose that a sequence $b_1, b_2, \ldots \in \mathbf{B}(A)$ satisfies the following conditions:

(Partition of unity) $\bigvee_{n \in \mathbb{N}} b_n = 1$ and $b_j \wedge b_k = 0$ for all $j \neq k$.

Then the map $x \mapsto (x \wedge b_1, x \wedge b_2, \ldots) = (x \wedge b_n)_{n \in \mathbb{N}}$ is an isomorphism of A onto the product MV-algebra $\prod_{n \in \mathbb{N}} [0, b_n]$.

4. MV-ALGEBRAIC CANTOR-BERNSTEIN THEOREM

In this section we prove the following MV-algebraic generalization of the Cantor-Bernstein theorem.

Theorem 4.1. Let A and B be σ -complete MV-algebras. Let $a \in \mathbf{B}(A)$, $b \in \mathbf{B}(B)$, and assume α to be an isomorphism of A onto the interval algebra [0, b] of B, and β an isomorphism of B onto the interval algebra [0, a] of A. Then A and B are isomorphic.

Proof. Skipping all trivialities, we may safely assume 0 < a < 1 and 0 < b < 1. Also, A and B can be safely assumed disjoint. We can now define sequences $a_0, a_1, a_2, \ldots \in A$ and $b_0, b_1, b_2, \ldots \in B$ by the following inductive stipulation:

$$a_0 = 1,$$
 $b_0 = 1,$
 $a_{n+1} = \beta(b_n),$ $b_{n+1} = \alpha(a_n)$

For each n = 0, 1, 2, ..., both elements a_n and b_n are boolean. From the assumed injectivity of α and β we obtain

(14)
$$a_0 > a_1 > a_2 > \dots$$
 and $b_0 > b_1 > b_2 > \dots$

Let $a_{\infty} \in A$ and $b_{\infty} \in B$ be given by $a_{\infty} = \bigwedge_{n \in \mathbb{N}_0} a_n$ and $b_{\infty} = \bigwedge_{n \in \mathbb{N}_0} b_n$. The existence of a_{∞} and b_{∞} is ensured by the assumed σ -completeness of A and B. By Corollary 3.3 (i) both a_{∞} and b_{∞} are boolean elements. For all $n \in \mathbb{N}_0$ we have the identities $a_{n+2} = (\beta \circ \alpha)(a_n)$ and $b_{n+2} = (\alpha \circ \beta)(b_n)$. Since the mapping $\beta \circ \alpha$ is an isomorphism of A onto $[0, a_2]$, it preserves countable infima and suprema. Since

for each n = 0, 1, 2, ... the underlying orders of the interval MV-algebras $[0, a_n]$ and $[0, a_{n+1}]$ agree, we have

$$(\beta \circ \alpha)(a_{\infty}) = (\beta \circ \alpha) \left(\bigwedge_{n \in \mathbb{N}} a_n\right) = \bigwedge_{n \in \mathbb{N}} (\beta \circ \alpha)(a_n) = \bigwedge_{n \in \mathbb{N}} a_{n+2} = a_{\infty}.$$

Similarly, $b_{\infty} = (\alpha \circ \beta)(b_{\infty})$. One similarly obtains

(15)
$$\alpha(a_{\infty}) = b_{\infty} \text{ and } \beta(b_{\infty}) = a_{\infty}.$$

In particular, $a_{\infty} = 0$ iff $b_{\infty} = 0$. For each n = 0, 1, 2, ... let us define $d_n = a_n \ominus a_{n+1} = a_n \wedge \neg a_{n+1}$ and $e_n = b_n \ominus b_{n+1} = b_n \wedge \neg b_{n+1}$. Then for each n = 0, 1, 2, ... we have

(16)
$$\alpha(d_{2n}) = e_{2n+1}$$
 and $\beta(e_{2n}) = d_{2n+1}$.

A straightforward computation shows that, for any two distinct $m, n \in \mathbb{N}_0$, $d_m \wedge d_n = 0 = e_m \wedge e_n$.

Lemma 3.1 together with (14) yields

$$\bigvee_{n\in\mathbb{N}} d_{n-1} = \bigvee_{n\in\mathbb{N}} \bigvee_{k=1}^{n} d_{k-1} = \bigvee_{n\in\mathbb{N}} (1\ominus a_n) = \bigvee_{n\in\mathbb{N}} \neg a_n = \neg \bigwedge_{n\in\mathbb{N}} a_n = \neg a_\infty.$$

It follows that the sequence $(a_{\infty}, d_0, d_1, d_2, ...)$ is a partition of unity in $\mathbf{B}(A)$. Analogously, the sequence $(b_{\infty}, e_0, e_1, e_2, ...)$ is a partition of unity in $\mathbf{B}(B)$. By Lemma 3.4, the map

$$x \mapsto (x \wedge a_{\infty}, x \wedge d_0, x \wedge d_1, x \wedge d_2, \ldots)$$

is an isomorphism of A onto the product MV-algebra $[0, a_{\infty}] \times [0, d_0] \times [0, d_1] \times [0, d_2] \times \ldots$ Similarly, the map

$$y \mapsto (y \wedge b_{\infty}, y \wedge e_0, y \wedge e_1, y \wedge e_2, \ldots)$$

is an isomorphism of B onto $[0, b_{\infty}] \times [0, e_0] \times [0, e_1] \times [0, e_2] \times ...$ By Lemma 2.4 and (15), the restriction of α to $[0, a_{\infty}]$ is an isomorphism of $[0, a_{\infty}]$ onto $[0, b_{\infty}]$, in symbols (and with a slight abuse of notation),

$$\alpha\colon [0, a_{\infty}] \cong [0, b_{\infty}].$$

Another application of Lemma 2.4 together with (16) yields, for each n = 0, 1, 2, ...,an isomorphism

$$\alpha \colon [0, d_{2n}] \cong [0, e_{2n+1}].$$

Similarly, from the isomorphism β : $[0, e_{2n}] \cong [0, d_{2n+1}]$ one obtains an isomorphism

$$\beta^{-1}$$
: $[0, d_{2n+1}] \cong [0, e_{2n}]$

for each n = 0, 1, 2, ... It is now easy to obtain an isomorphism of $[0, a_{\infty}] \times [0, d_0] \times [0, d_1] \times [0, d_2] \times ...$ onto $[0, b_{\infty}] \times [0, e_0] \times [0, e_1] \times [0, e_2] \times ...$, whence one has the desired isomorphism of A onto B.

If A happens to be a boolean algebra, the above theorem reduces to the booleanalgebraic Cantor-Bernstein theorem stated in the introduction, and proved by Sikorski and Tarski.

5. A related result by Jakubík

In his paper [4], Jakubík proved a different form of Cantor-Bernstein theorem for MV-algebras. In this section we shall compare Jakubík's result with our Theorem 4.1.

A lattice isomorphism between two MV-algebras A and B is a one-one map of A onto B that preserves the underlying lattice structures of A and B. We say that A and B are lattice isomorphic iff there is a lattice isomorphism between A and B.

Let $\mathcal{D} \subseteq [0, 1]$ be the MV-algebra consisting of all rational numbers in [0, 1] whose denominator is $1, 2, 4, 8, 16, \ldots$ Let \mathcal{Q} be the subalgebra of [0, 1] consisting of all rational numbers in [0, 1]. Then \mathcal{D} and \mathcal{Q} are lattice isomorphic (as denumerable, densely ordered chains with two endpoints) but they are not isomorphic MV-algebras. As a matter of fact, the equation $x \oplus x = \neg x$ has a solution in \mathcal{Q} , but does not have any solution in \mathcal{D} . Thus, the existence of a lattice isomorphic. Trivially, if two MV-algebras are isomorphic then their underlying lattices are isomorphic.

For any MV-algebra A let us consider the following property:

(*) If
$$a \in A$$
 and $[0, a]$ is a boolean algebra, then $a \in \mathbf{B}(A)$.

Jakubík proved

Theorem 5.1 [4]. Let A and B be complete MV-algebras satisfying condition (*). Suppose that for some $a \in A$, $b \in B$, A is lattice isomorphic to [0, b] and B is lattice isomorphic to [0, a]. Then A and B are isomorphic as MV-algebras.

The rest of this section is devoted to a comparison between Jakubík's theorem and our Theorem 4.1. To this aim, we present an example that simultaneously shows the necessity of condition (*) in Jakubík's Theorem 5.1 and the necessity of the assumption that a and b are boolean in our Theorem 4.1.

Example. Let $\mathcal{K} = \{0, 1/2, 1\}$ be the uniquely determined three-element subalgebra of the MV-algebra [0, 1] from Example 2.1. Denote by A the product of denumerably many copies of \mathcal{K} ,

$$A = \mathcal{K} \times \mathcal{K} \times \mathcal{K} \times \dots$$

With pointwise defined operations, A is a complete MV-algebra. Let elements $a, b \in A$ be defined by

$$a = (1/2, 1, 1, 1, ...),$$

 $b = (0, 1, 1, 1, ...).$

Then B = [0, a] equipped with the operations from Definition 2.2 is a complete MValgebra which is (isomorphic to) an interval of A. On the other hand, A is isomorphic to [0, b] via the isomorphism $\alpha \colon A \to [0, b]$ defined by

$$\alpha((x_1, x_2, x_3, \ldots)) = (0, x_1, x_2, x_3, \ldots).$$

A fortiori, *B* is lattice isomorphic to an interval of *A*, and *A* is lattice isomorphic to the interval [0, b] of *B*. Nevertheless, *A* and *B* are not isomorphic MV-algebras. Indeed, the element c = (1/2, 0, 0, ...) is an atom of *B* (minimal nonzero element) and it also belongs to the boolean algebra $\mathbf{B}(B)$, while no atom of *A* is boolean.

Trivially, the interval $[0, c] = \{0, c\}$ is a boolean algebra, but the atom c is not boolean in A, and condition (*) is not satisfied. On the other hand, all the other assumptions of Theorem 5.1 are satisfied. This shows the necessity of assumption (*) in Jakubík's Theorem 5.1. The present example also shows that our Theorem 4.1 would no longer hold without assuming the elements a and b therein to be boolean.

Note that Theorem 4.1 also holds for MV-algebras not satisfying condition (*). We can, for example, apply it to the MV-algebras A and B of the above example. On the other hand, the assumption that a and b are boolean is not needed in Theorem 5.1.

We finally remark that Theorem 5.1 is stated for complete MV-algebras, while our result here is valid for a larger class of σ -complete MV-algebras.

Altogether, Theorems 5.1 and 4.1 are incomparable.

References

- R. Cignoli and D. Mundici: An invitation to Chang's MV-algebras. In: Advances in Algebra and Model Theory (M. Droste, R. Göbel, eds.). Gordon and Breach Publishing Group, Reading, UK, 1997, pp. 171–197.
- [2] R. Cignoli, I. M. L. D'Ottaviano and D. Mundici: Algebraic Foundations of Many-valued Reasoning. Trends in Logic. Vol. 7. Kluwer Academic Publishers, Dordrecht, 1999.
- W. Hanf: On some fundamental problems concerning isomorphism of boolean algebras. Math. Scand. 5 (1957), 205–217.
- [4] J. Jakubik: Cantor-Bernstein theorem for MV-algebras. Czechoslovak Math. J. 49(124) (1999), 517–526.
- [5] S. Kinoshita: A solution to a problem of Sikorski. Fund. Math. 40 (1953), 39-41.
- [6] A. Levy: Basic Set Theory. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1979.
- [7] D. Mundici: Interpretation of AF C*-algebras in Lukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15–63.
- [8] R. Sikorski: Boolean Algebras. Springer-Verlag. Ergebnisse Math. Grenzgeb., Berlin, 1960.
- [9] R. Sikorski: A generalization of a theorem of Banach and Cantor-Bernstein. Colloq. Math. 1 (1948), 140–144 and 242.
- [10] A. Tarski: Cardinal Algebras. Oxford University Press, New York, 1949.

Authors' addresses: A. De Simone, Dip. di Matematica e Statistica, Università degli Studi di Napoli "Federico II", Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy, e-mail: annades@unina.it; D. Mundici, Department of Mathematics, University of Florence, Viale Morgagni 67/A, 50134 Florence, Italy, e-mail: mundici@math.unifi.it; M. Navara, Center for Machine Perception, Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University, Technická 2, 166 27 Praha 6, Czech Republic, e-mail: navara@cmp.felk.cvut.cz.