A CANTOR-BERNSTEIN THEOREM FOR σ-COMPLETE MV-ALGEBRAS

A. De Simone, Napoli, D. Mundici, Florence, and M. Navara, Praha

(Received June 14, 2000)

Abstract. The Cantor-Bernstein theorem was extended to σ-complete boolean algebras by Sikorski and Tarski. Chang's MV-algebras are a nontrivial generalization of boolean algebras: they stand to the infinite-valued calculus of Lukasiewicz as boolean algebras stand to the classical two-valued calculus. In this paper we further generalize the CantorBernstein theorem to σ-complete MV-algebras, and compare it to a related result proved by Jakubík for certain complete MV-algebras.

Keywords: Cantor-Bernstein theorem, MV-algebra, boolean element of an MV-algebra, partition of unity, direct product decomposition, σ-complete MV-algebra

MSC 2000: 06D35, 06D30, 06C15, 03G20

1. Introduction

The Cantor-Bernstein theorem states that, if a set X can be embedded into a set Y, and vice versa, then there is a one-one map of X onto Y. The theorem was proved by Dedekind in 1887, conjectured by Cantor in 1895, and again proved by Bernstein in 1898, [6, p. 85].

For any boolean algebra A, let $[0, a]$ denote the boolean algebra of all $x \in A$ such that $0 \leqslant x \leqslant a$, equipped with the restriction of the join and meet of A, where the complement of $y \in[0, a]$ is the meet of a with the complement $\neg y$ of y in A. (Note that Sikorski [8, p. 29] writes $A \mid a$ instead of $[0, a]$.)

[^0]Sikorski [9] and Tarski [10] proved the following generalization of the (Dedekind)-Cantor-Bernstein theorem: For any two σ-complete boolean algebras A and B and elements $a \in A$ and $b \in B$, if B is isomorphic to $[0, a]$ and A is isomorphic to $[0, b]$, then A and B are isomorphic. To obtain the Cantor-Bernstein theorem it suffices to assume that A and B are the powersets of X and Y, respectively, with the natural set-theoretic boolean operations.

Our aim in this paper is to further generalize the Cantor-Bernstein theorem to MValgebras - the latter being an interesting "non-commutative" extension of boolean algebras (see [7] for a precise formulation of this). Since, as proved in [3] and [5], the σ-completeness assumption is indispensable already in the boolean algebraic setup, our Cantor-Bernstein theorem shall be proved for σ-complete MV-algebras.

2. MV-ALGEBRAS

An $M V$-algebra $A=(A, 0, \oplus, \neg)$ is an algebra where the operation $\oplus: A \times A \rightarrow A$ is associative and commutative with 0 as the neutral element, the operation $\neg: A \rightarrow A$ satisfies the identities $\neg \neg x=x$ and $x \oplus \neg 0=\neg 0$, and, in addition,

$$
\begin{equation*}
y \oplus \neg(y \oplus \neg x)=x \oplus \neg(x \oplus \neg y) . \tag{1}
\end{equation*}
$$

Example 2.1. The real unit interval [0, 1] equipped with the operations $x \oplus y=$ $\min (1, x+y)$ and $\neg x=1-x$ is an MV-algebra.

Following common usage, for any elements x, y of an MV-algebra we will use the abbreviations $1=\neg 0, x \odot y=\neg(\neg x \oplus \neg y)$ and $x \ominus y=x \odot \neg y$. We will denote by (A, \vee, \wedge) the underlying distributive lattice of A, where $x \vee y=x \oplus \neg(x \oplus \neg y)$ and $x \wedge y=x \odot \neg(x \odot \neg y)$. With reference to the underlying order of A, for any element $a \in A$ we let the interval $[0, a]$ be defined by

$$
[0, a]=\{x \in A \mid 0 \leqslant x \leqslant a\} .
$$

An MV-algebra A is σ-complete (complete) iff every sequence (every family, respectively) of elements of A has supremum in A with respect to the underlying order of A.

As shown by Chang, boolean algebras coincide with MV-algebras satisfying the equation $x \oplus x=x$. In this case the operation \oplus coincides with \vee, and the operation \odot coincides with \wedge.

An element a in an MV-algebra A is called boolean iff $a \oplus a=a$. We let $\mathbf{B}(A)$ denote the set of boolean elements of A. It is not hard to see that the operations of A make $\mathbf{B}(A)$ a boolean algebra. As shown in Corollary 3.3 below, if A is a σ-complete

MV-algebra, then $\mathbf{B}(A)$ is a σ-complete boolean algebra, and the σ-infinitary operations of $\mathbf{B}(A)$ agree with the restrictions of the corresponding operations of A.

A homomorphism between two MV-algebras is a map that sends zero to zero, and preserves the operations \oplus and \neg. A one-one surjective homomorphism is called an isomorphism.

For further information on MV-algebras we refer to [1], [2] and [7].
Definition 2.2. Let A be an MV-algebra and z a fixed, but otherwise arbitrary, element of A. Let the map $h_{z}: A \rightarrow[0, z]$ be defined by

$$
\begin{equation*}
h_{z}(x)=x \wedge z \tag{2}
\end{equation*}
$$

Further, we define the operation $\neg_{z}:[0, z] \rightarrow[0, z]$ by

$$
\begin{equation*}
\neg_{z} x=z \odot \neg x=z \ominus x \tag{3}
\end{equation*}
$$

and the operation $\oplus_{z}:[0, z] \times[0, z] \rightarrow[0, z]$ by

$$
\begin{equation*}
x \oplus_{z} y=(x \oplus y) \wedge z \tag{4}
\end{equation*}
$$

A moment's reflection shows that the ranges of both operations \neg_{z} and \oplus_{z} coincide with $[0, z]$.

Proposition 2.3. Let A be an $M V$-algebra and $b \in A$. We then have
(i) for each element $b \in A$, the structure $\left([0, b], \oplus_{b}, \neg_{b}, 0\right)$ is an MV-algebra. If, in addition, b is a boolean element of A then
(ii) $\neg_{b} x=b \wedge \neg x$ for all $x \in[0, b]$;
(iii) the interval $[0, b]$ (as well as the interval $[0, \neg b]$) is an ideal of A;
(iv) The map h_{b} defined in (2) is a homomorphism of A onto $[0, b]$ whose kernel coincides with $[0, \neg b]$;
(v) The $M V$-algebra $[0, b]$ is isomorphic to the quotient $M V$-algebra $A /[0, \neg b]$;
(vi) $[0, b]$ is a subalgebra of A iff $b=1$ iff $[0, b]=A$.

Proof. (i) For every $x \in[0, b]$ we have

$$
\neg_{b} \neg_{b} x=b \odot \neg(b \odot \neg x)=b \wedge x=x
$$

and

$$
x \oplus_{b} \neg_{b} 0=x \oplus_{b} b=(x \oplus b) \wedge b=b=\neg_{b} 0 .
$$

Associativity of \oplus_{b} follows from the identities

$$
\begin{aligned}
\left(x \oplus_{b} y\right) \oplus_{b} z & =(((x \oplus y) \wedge b) \oplus z) \wedge b \\
& =((x \oplus y \oplus z) \wedge(b \oplus z)) \wedge b \\
& =(x \oplus y \oplus z) \wedge b=\ldots=x \oplus_{b}\left(y \oplus_{b} z\right) .
\end{aligned}
$$

With reference to (1) we shall now prove the identity

$$
\begin{equation*}
y \oplus_{b} \neg_{b}\left(y \oplus_{b} \neg_{b} x\right)=x \oplus_{b} \neg_{b}\left(x \oplus_{b} \neg_{b} y\right) \quad \text { for all } x, y \in[0, b] . \tag{5}
\end{equation*}
$$

First, using distributivity of \odot over \vee, we transform a part of the expression on the left-hand side of (5) as follows:

$$
\begin{aligned}
\neg_{b}\left(y \oplus_{b} \neg_{b} x\right) & =b \odot \neg((y \oplus(b \odot \neg x)) \wedge b) \\
& =b \odot((\neg y \odot \neg(b \odot \neg x)) \vee \neg b)=b \odot \neg y \odot \neg(b \odot \neg x) \\
& =\neg y \odot(b \wedge x)=\neg y \odot x=\neg(y \oplus \neg x) .
\end{aligned}
$$

We can now simplify the left-hand term in (5) as follows:

$$
y \oplus_{b} \neg_{b}\left(y \oplus_{b} \neg_{b} x\right)=(y \oplus \neg(y \oplus \neg x)) \wedge b=(y \vee x) \wedge b=y \vee x
$$

which settles (5). The remaining verifications needed to show that $[0, b]$ is an MValgebra are all trivial.

Following now the proof of [2, Proposition 6.4.1], let us assume that $b \in \mathbf{B}(A)$. Then condition (ii) is an immediate consequence of the definition of \neg_{b} and of the fact that \odot coincides with \wedge whenever one of its arguments is boolean, [2, Theorem 1.5.3]. Similarly, (iii) follows from the definition of a boolean element, [2, Corollary 1.5.6], and we also see that \oplus_{b} coincides with the restriction of \oplus to $[0, b]$. To prove (iv), for all $x, y \in A$ we can write $(x \wedge b) \oplus(y \wedge b)=((x \wedge b) \oplus y) \wedge((x \wedge b) \oplus b)$. From $(x \wedge b) \oplus b=(x \wedge b) \vee b=b$ we get $(x \wedge b) \oplus(y \wedge b)=(x \oplus y) \wedge(b \oplus y) \wedge b=(x \oplus y) \wedge b$. We conclude that $h_{b}(x \oplus y)=h_{b}(x) \oplus h_{b}(y)=h_{b}(x) \oplus_{b} h_{b}(y)$. The rest is trivial. The proof of (v) and (vi) is the same as in [2, Proposition 6.4.3].

Remarks. As shown by (ii) above, whenever b is a boolean element of A, there is no discrepancy between our present definition of \neg_{b} and the definition in [2, (6.4)].

If in a boolean algebra B we denote by \mathcal{I} the principal ideal generated by $\neg b$, then $\mathcal{I}=[0, \neg b]$ and the algebra $[0, b]$ is isomorphic to B / \mathcal{I} via the map $x \in[0, b] \mapsto$ $x / \mathcal{I} \in B / \mathcal{I}$. Condition (v) is a generalization of this fact to MV-algebras.

If a is not a boolean element of A, then $[0, a]$ need not be a homomorphic image of A. For an example, let $A=\{0,1 / 2,1\}$ be a subalgebra of the MV-algebra $[0,1]$
of Example 2.1. Then $[0,1 / 2]=\{0,1 / 2\}$ is not a homomorphic image of A, because A has no other ideals than $\{0\}$. One more example is given in 5.2 below.

On the other hand, the existence of a homomorphism of A onto $[0, a]$ need not imply that a is a boolean element of A. As a matter of fact, in the MV-algebra $[0,1]$ of Example 2.1, multiplication by $1 / 2$ is a homomorphism of $[0,1]$ onto the interval MV-algebra $[0,1 / 2]$, but the element $1 / 2$ is not boolean in $[0,1]$.

The proof of the following result is immediate.
Lemma 2.4. Let A and B be $M V$-algebras and let $\alpha: A \rightarrow B$ be an isomorphism of A onto B. For any $a \in A$, the restriction of the map α to the interval $[0, a]$ of A is an isomorphism of the $M V$-algebra $[0, a]$ onto the interval $[0, \alpha(a)]$ of B, once these two intervals are equipped with the MV-algebraic operations of Definition 2.2 and Proposition 2.3 (i).

Corollary 2.5. For each $a \in \mathbf{B}(A)$, the mapping $x \mapsto(x \wedge a, x \wedge \neg a)$ is an isomorphism of A onto the product $M V$-algebra $[0, a] \times[0, \neg a]$.

Proof. The same as for [2, Lemma 6.4.5].

3. Partitions of unity and decompositions

In Lemma 3.4 below we will give an infinitary generalization of Corollary 2.5. To this purpose, we prepare

Notation. We set $\mathbb{N}=\{1,2,3, \ldots\}, \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ and $\mathbb{N}_{\infty}=\mathbb{N} \cup\{\infty\}$.
Lemma 3.1. Let A be a σ-complete $M V$-algebra. Let $x_{1}, x_{2}, \ldots \in A$. Then the following countably infinitary de Morgan identities hold:

$$
\begin{equation*}
\bigwedge_{n \in \mathbb{N}} x_{n}=\neg \bigvee_{n \in \mathbb{N}} \neg x_{n} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\bigvee_{n \in \mathbb{N}} x_{n}=\neg \bigwedge_{n \in \mathbb{N}} \neg x_{n} . \tag{7}
\end{equation*}
$$

Proof. Let $a=\bigwedge_{n \in \mathbb{N}} x_{n}$ and $b=\bigvee_{n \in \mathbb{N}} \neg x_{n}$. For all $n \in \mathbb{N}$ we have $a \leqslant x_{n}$, whence $\neg a \geqslant \neg x_{n}$. Therefore $\neg a \geqslant \bigvee_{n \in \mathbb{N}} \neg x_{n}=b$. Similarly, for all $n \in \mathbb{N}$ we have $b \geqslant \neg x_{n}, \neg b \leqslant x_{n}$, whence $\neg b \leqslant \bigwedge_{n \in \mathbb{N}} x_{n}=a$ and $b \geqslant \neg a$, which settles (6). The proof of (7) is similar.

As an immediate consequence we get the following infinitary distributive laws:

Lemma 3.2. Let A be a σ-complete $M V$-algebra. Let $x_{1}, x_{2}, \ldots \in A$. Then for each $x \in A$ we have

$$
\begin{equation*}
x \wedge \bigvee_{n \in \mathbb{N}} x_{n}=\bigvee_{n \in \mathbb{N}}\left(x \wedge x_{n}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
x \vee \bigwedge_{n \in \mathbb{N}} x_{n}=\bigwedge_{n \in \mathbb{N}}\left(x \vee x_{n}\right) . \tag{9}
\end{equation*}
$$

Proof. This is an easy adaptation of the proof of [2, Lemma 6.6.4].

Corollary 3.3. Let A be a σ-complete $M V$-algebra. Then
(i) $\mathbf{B}(A)$ is a σ-complete boolean algebra. As a matter of fact, for any sequence $b_{1}, b_{2}, \ldots \in \mathbf{B}(A)$ we have

$$
\begin{equation*}
\bigvee_{n \in \mathbb{N}} b_{n} \in \mathbf{B}(A) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\bigwedge_{n \in \mathbb{N}} b_{n} \in \mathbf{B}(A) \tag{11}
\end{equation*}
$$

(ii) For every $b \in \mathbf{B}(A)$, letting $h_{b}: A \rightarrow[0, b]$ be as in (2), it follows that $[0, b]$ is a σ-complete MV-algebra, and h_{b} preserves all existing infima and suprema. Therefore, for all $x_{1}, x_{2}, \ldots \in A$ we can write

$$
\begin{equation*}
h_{b}\left(\bigvee_{n \in \mathbb{N}} x_{n}\right)=\bigvee_{n \in \mathbb{N}} h_{b}\left(x_{n}\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{b}\left(\bigwedge_{n \in \mathbb{N}} x_{n}\right)=\bigwedge_{n \in \mathbb{N}} h_{b}\left(x_{n}\right) . \tag{13}
\end{equation*}
$$

Proof. An easy adaptation of the proof of [2, Corollary 6.6.5].

From Lemma 3.2 we obtain the desired generalization of Corollary 2.5, given by the following variant of [2, Lemma 6.6.6].

Lemma 3.4. Let A be a σ-complete $M V$-algebra. Suppose that a sequence $b_{1}, b_{2}, \ldots \in \mathbf{B}(A)$ satisfies the following conditions:
(Partition of unity)

$$
\bigvee_{n \in \mathbb{N}} b_{n}=1 \quad \text { and } \quad b_{j} \wedge b_{k}=0 \quad \text { for all } j \neq k
$$

Then the map $x \mapsto\left(x \wedge b_{1}, x \wedge b_{2}, \ldots\right)=\left(x \wedge b_{n}\right)_{n \in \mathbb{N}}$ is an isomorphism of A onto the product $M V$-algebra $\prod_{n \in \mathbb{N}}\left[0, b_{n}\right]$.

4. MV-algebraic Cantor-Bernstein theorem

In this section we prove the following MV-algebraic generalization of the CantorBernstein theorem.

Theorem 4.1. Let A and B be σ-complete MV-algebras. Let $a \in \mathbf{B}(A), b \in$ $\mathbf{B}(B)$, and assume α to be an isomorphism of A onto the interval algebra $[0, b]$ of B, and β an isomorphism of B onto the interval algebra $[0, a]$ of A. Then A and B are isomorphic.

Proof. Skipping all trivialities, we may safely assume $0<a<1$ and $0<$ $b<1$. Also, A and B can be safely assumed disjoint. We can now define sequences $a_{0}, a_{1}, a_{2}, \ldots \in A$ and $b_{0}, b_{1}, b_{2}, \ldots \in B$ by the following inductive stipulation:

$$
\begin{aligned}
a_{0} & =1, & b_{0} & =1, \\
a_{n+1} & =\beta\left(b_{n}\right), & b_{n+1} & =\alpha\left(a_{n}\right) .
\end{aligned}
$$

For each $n=0,1,2, \ldots$, both elements a_{n} and b_{n} are boolean. From the assumed injectivity of α and β we obtain

$$
\begin{equation*}
a_{0}>a_{1}>a_{2}>\ldots \quad \text { and } \quad b_{0}>b_{1}>b_{2}>\ldots \tag{14}
\end{equation*}
$$

Let $a_{\infty} \in A$ and $b_{\infty} \in B$ be given by $a_{\infty}=\bigwedge_{n \in \mathbb{N}_{0}} a_{n}$ and $b_{\infty}=\bigwedge_{n \in \mathbb{N}_{0}} b_{n}$. The existence of a_{∞} and b_{∞} is ensured by the assumed σ-completeness of A and B. By Corollary 3.3 (i) both a_{∞} and b_{∞} are boolean elements. For all $n \in \mathbb{N}_{0}$ we have the identities $a_{n+2}=(\beta \circ \alpha)\left(a_{n}\right)$ and $b_{n+2}=(\alpha \circ \beta)\left(b_{n}\right)$. Since the mapping $\beta \circ \alpha$ is an isomorphism of A onto $\left[0, a_{2}\right]$, it preserves countable infima and suprema. Since
for each $n=0,1,2, \ldots$ the underlying orders of the interval MV-algebras $\left[0, a_{n}\right]$ and [$0, a_{n+1}$] agree, we have

$$
(\beta \circ \alpha)\left(a_{\infty}\right)=(\beta \circ \alpha)\left(\bigwedge_{n \in \mathbb{N}} a_{n}\right)=\bigwedge_{n \in \mathbb{N}}(\beta \circ \alpha)\left(a_{n}\right)=\bigwedge_{n \in \mathbb{N}} a_{n+2}=a_{\infty}
$$

Similarly, $b_{\infty}=(\alpha \circ \beta)\left(b_{\infty}\right)$. One similarly obtains

$$
\begin{equation*}
\alpha\left(a_{\infty}\right)=b_{\infty} \quad \text { and } \quad \beta\left(b_{\infty}\right)=a_{\infty} . \tag{15}
\end{equation*}
$$

In particular, $a_{\infty}=0$ iff $b_{\infty}=0$. For each $n=0,1,2, \ldots$ let us define $d_{n}=$ $a_{n} \ominus a_{n+1}=a_{n} \wedge \neg a_{n+1}$ and $e_{n}=b_{n} \ominus b_{n+1}=b_{n} \wedge \neg b_{n+1}$. Then for each $n=0,1,2, \ldots$ we have

$$
\begin{equation*}
\alpha\left(d_{2 n}\right)=e_{2 n+1} \quad \text { and } \quad \beta\left(e_{2 n}\right)=d_{2 n+1} . \tag{16}
\end{equation*}
$$

A straightforward computation shows that, for any two distinct $m, n \in \mathbb{N}_{0}, d_{m} \wedge d_{n}=$ $0=e_{m} \wedge e_{n}$.

Lemma 3.1 together with (14) yields

$$
\bigvee_{n \in \mathbb{N}} d_{n-1}=\bigvee_{n \in \mathbb{N}} \bigvee_{k=1}^{n} d_{k-1}=\bigvee_{n \in \mathbb{N}}\left(1 \ominus a_{n}\right)=\bigvee_{n \in \mathbb{N}} \neg a_{n}=\neg \bigwedge_{n \in \mathbb{N}} a_{n}=\neg a_{\infty}
$$

It follows that the sequence $\left(a_{\infty}, d_{0}, d_{1}, d_{2}, \ldots\right)$ is a partition of unity in $\mathbf{B}(A)$. Analogously, the sequence $\left(b_{\infty}, e_{0}, e_{1}, e_{2}, \ldots\right)$ is a partition of unity in $\mathbf{B}(B)$. By Lemma 3.4, the map

$$
x \mapsto\left(x \wedge a_{\infty}, x \wedge d_{0}, x \wedge d_{1}, x \wedge d_{2}, \ldots\right)
$$

is an isomorphism of A onto the product MV-algebra $\left[0, a_{\infty}\right] \times\left[0, d_{0}\right] \times\left[0, d_{1}\right] \times$ $\left[0, d_{2}\right] \times \ldots$ Similarly, the map

$$
y \mapsto\left(y \wedge b_{\infty}, y \wedge e_{0}, y \wedge e_{1}, y \wedge e_{2}, \ldots\right)
$$

is an isomorphism of B onto $\left[0, b_{\infty}\right] \times\left[0, e_{0}\right] \times\left[0, e_{1}\right] \times\left[0, e_{2}\right] \times \ldots$ By Lemma 2.4 and (15), the restriction of α to $\left[0, a_{\infty}\right]$ is an isomorphism of $\left[0, a_{\infty}\right]$ onto $\left[0, b_{\infty}\right]$, in symbols (and with a slight abuse of notation),

$$
\alpha:\left[0, a_{\infty}\right] \cong\left[0, b_{\infty}\right]
$$

Another application of Lemma 2.4 together with (16) yields, for each $n=0,1,2, \ldots$, an isomorphism

$$
\alpha:\left[0, d_{2 n}\right] \cong\left[0, e_{2 n+1}\right]
$$

Similarly, from the isomorphism $\beta:\left[0, e_{2 n}\right] \cong\left[0, d_{2 n+1}\right]$ one obtains an isomorphism

$$
\beta^{-1}:\left[0, d_{2 n+1}\right] \cong\left[0, e_{2 n}\right]
$$

for each $n=0,1,2, \ldots$ It is now easy to obtain an isomorphism of $\left[0, a_{\infty}\right] \times\left[0, d_{0}\right] \times$ $\left[0, d_{1}\right] \times\left[0, d_{2}\right] \times \ldots$ onto $\left[0, b_{\infty}\right] \times\left[0, e_{0}\right] \times\left[0, e_{1}\right] \times\left[0, e_{2}\right] \times \ldots$, whence one has the desired isomorphism of A onto B.

If A happens to be a boolean algebra, the above theorem reduces to the booleanalgebraic Cantor-Bernstein theorem stated in the introduction, and proved by Sikorski and Tarski.

5. A related result by Jakubík

In his paper [4], Jakubík proved a different form of Cantor-Bernstein theorem for MV-algebras. In this section we shall compare Jakubík's result with our Theorem 4.1.

A lattice isomorphism between two MV-algebras A and B is a one-one map of A onto B that preserves the underlying lattice structures of A and B. We say that A and B are lattice isomorphic iff there is a lattice isomorphism between A and B.

Let $\mathcal{D} \subseteq[0,1]$ be the MV-algebra consisting of all rational numbers in $[0,1]$ whose denominator is $1,2,4,8,16, \ldots$ Let \mathcal{Q} be the subalgebra of $[0,1]$ consisting of all rational numbers in $[0,1]$. Then \mathcal{D} and \mathcal{Q} are lattice isomorphic (as denumerable, densely ordered chains with two endpoints) but they are not isomorphic MV-algebras. As a matter of fact, the equation $x \oplus x=\neg x$ has a solution in \mathcal{Q}, but does not have any solution in \mathcal{D}. Thus, the existence of a lattice isomorphism between two MValgebras need not imply that the two MV-algebras are isomorphic. Trivially, if two MV-algebras are isomorphic then their underlying lattices are isomorphic.

For any MV-algebra A let us consider the following property:

$$
\begin{equation*}
\text { If } a \in A \text { and }[0, a] \text { is a boolean algebra, then } a \in \mathbf{B}(A) \text {. } \tag{*}
\end{equation*}
$$

Jakubík proved

Theorem 5.1 [4]. Let A and B be complete $M V$-algebras satisfying condition (*). Suppose that for some $a \in A, b \in B, A$ is lattice isomorphic to $[0, b]$ and B is lattice isomorphic to $[0, a]$. Then A and B are isomorphic as $M V$-algebras.

The rest of this section is devoted to a comparison between Jakubík's theorem and our Theorem 4.1. To this aim, we present an example that simultaneously shows the necessity of condition $(*)$ in Jakubík's Theorem 5.1 and the necessity of the assumption that a and b are boolean in our Theorem 4.1.

Example. Let $\mathcal{K}=\{0,1 / 2,1\}$ be the uniquely determined three-element subalgebra of the MV-algebra [0, 1] from Example 2.1. Denote by A the product of denumerably many copies of \mathcal{K},

$$
A=\mathcal{K} \times \mathcal{K} \times \mathcal{K} \times \ldots
$$

With pointwise defined operations, A is a complete MV-algebra. Let elements $a, b \in A$ be defined by

$$
\begin{aligned}
a & =(1 / 2,1,1,1, \ldots) \\
b & =(0,1,1,1, \ldots) .
\end{aligned}
$$

Then $B=[0, a]$ equipped with the operations from Definition 2.2 is a complete MValgebra which is (isomorphic to) an interval of A. On the other hand, A is isomorphic to $[0, b]$ via the isomorphism $\alpha: A \rightarrow[0, b]$ defined by

$$
\alpha\left(\left(x_{1}, x_{2}, x_{3}, \ldots\right)\right)=\left(0, x_{1}, x_{2}, x_{3}, \ldots\right) .
$$

A fortiori, B is lattice isomorphic to an interval of A, and A is lattice isomorphic to the interval $[0, b]$ of B. Nevertheless, A and B are not isomorphic MV-algebras. Indeed, the element $c=(1 / 2,0,0, \ldots)$ is an atom of B (minimal nonzero element) and it also belongs to the boolean algebra $\mathbf{B}(B)$, while no atom of A is boolean.

Trivially, the interval $[0, c]=\{0, c\}$ is a boolean algebra, but the atom c is not boolean in A, and condition $(*)$ is not satisfied. On the other hand, all the other assumptions of Theorem 5.1 are satisfied. This shows the necessity of assumption (*) in Jakubík's Theorem 5.1. The present example also shows that our Theorem 4.1 would no longer hold without assuming the elements a and b therein to be boolean.

Note that Theorem 4.1 also holds for MV-algebras not satisfying condition (*). We can, for example, apply it to the MV-algebras A and B of the above example. On the other hand, the assumption that a and b are boolean is not needed in Theorem 5.1.

We finally remark that Theorem 5.1 is stated for complete MV-algebras, while our result here is valid for a larger class of σ-complete MV-algebras.

Altogether, Theorems 5.1 and 4.1 are incomparable.

References

[1] R. Cignoli and D. Mundici: An invitation to Chang's MV-algebras. In: Advances in Algebra and Model Theory (M. Droste, R. Göbel, eds.). Gordon and Breach Publishing Group, Reading, UK, 1997, pp. 171-197.
[2] R. Cignoli, I. M. L. D'Ottaviano and D. Mundici: Algebraic Foundations of Many-valued Reasoning. Trends in Logic. Vol. 7. Kluwer Academic Publishers, Dordrecht, 1999.
[3] W. Hanf: On some fundamental problems concerning isomorphism of boolean algebras. Math. Scand. 5 (1957), 205-217.
[4] J. Jakubik: Cantor-Bernstein theorem for MV-algebras. Czechoslovak Math. J. 49(124) (1999), 517-526.
[5] S. Kinoshita: A solution to a problem of Sikorski. Fund. Math. 40 (1953), 39-41.
[6] A. Levy: Basic Set Theory. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1979.
[7] D. Mundici: Interpretation of AF C^{*}-algebras in Lukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15-63.
[8] R. Sikorski: Boolean Algebras. Springer-Verlag. Ergebnisse Math. Grenzgeb., Berlin, 1960.
[9] R. Sikorski: A generalization of a theorem of Banach and Cantor-Bernstein. Colloq. Math. 1 (1948), 140-144 and 242.
[10] A. Tarski: Cardinal Algebras. Oxford University Press, New York, 1949.
Authors' addresses: A. De Simone, Dip. di Matematica e Statistica, Università degli Studi di Napoli "Federico II", Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy, e-mail: annades@unina.it; D. Mundici, Department of Mathematics, University of Florence, Viale Morgagni 67/A, 50134 Florence, Italy, e-mail: mundici@math.unifi.it; M. Navara, Center for Machine Perception, Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University, Technická 2, 16627 Praha 6, Czech Republic, e-mail: navara@cmp.felk.cvut.cz.

[^0]: Research supported by COST ACTION 15 on Many-valued logics for computer science applications, Project on Logic of the Italian MURST, Project VS 96049 of the Czech Ministry of Education and Grant 201/97/0437 of the Grant Agency of the Czech Republic.

